пппппй

Technical features "sELF ENERGY" Models MoMa 20-20 MEF - 25-25 MEF			
Working	Automatic, through a constant monitoring of the service batteries Managed with a micro-controller - management with a "safety block system"		
Working status	Indicated on the electronic contr		
Working Temperature	$+50^{\circ} \mathrm{C} \div-25^{\circ} \mathrm{C}$ (with $<0^{\circ} \mathrm{C}$ Propa	Gas)	
Nominal tension	12 V		
Nominal current		20 A/hour MoMa 20-20 MEF	25 A/hour 25-25 MEF
Two stroke engine feeding	LPG (pressure $30 \mathrm{mBar} \pm 2$)		
LPG consumption	Each actual working hour	0,25Kg MoMa 20-20 MEF	0,27Kg 25-25 MEF
Lubricating consumption	1 Litre/~ 130 hours of actual wor		
Sound pressure at 7 meters LpA	Sound Pressure measured LpA	51dB (A) MoMa 20-20 MEF Lwa= $76 \mathrm{~dB}(\mathrm{~A})$	$\begin{aligned} & \text { 52dB (A) } 25-25 \mathrm{MEF} \\ & \text { Lwa }=78 \mathrm{~dB}(\mathrm{~A}) \end{aligned}$
Weight	19 Kg with full lubricating tank		
Lenght in mm	565 (necessary for the installatio		
Width in mm	380 (necessary for the installatio		
Height in mm	250 (necessary for the installatio		
Total capacity of the batteries (re	$160 \div 300$ Ah		
Protections	Oil minimum level - Motor therm	otection	
Installation	Under the floor in central or later	osition	
Exhaust gas	Piped to the roof or to ground		

Distributed current
Energetic independence
Use of electrical appliances
Automatic working (START 11,9V - STOP 14,5)
Manual working with automatic switch-off
Programming of working periods with Time Switch (Optional)
Management of the start battery through the BRIDGE (Optional)
Optimization of functioning in high mountains
Automatic varziation of current distribution
Perfect for caravans with more than 300 Ah batteries

A Connection to the pressure reducer (30 mBar) through a disconnecting valve (1), a rigid pipe (2))and a flexible hose (3)

B Electronic control unit of the Self Energy
C Connection to service battery
D Connection to an under key contact ($\mathrm{D}+$) in order to enable the "safety block system"

